LeetCode-64  最小路径和
题目
 
结果
 
代码
主要思路是,每一个位置只能由上面或者左面的位置到达,从而有了dp的可能性。
标准版DP
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 
 | class Solution {public int minPathSum(int[][] grid) {
 int row = grid.length;
 int col = grid[0].length;
 int[][] dp = new int[row][col];
 dp[0][0] = grid[0][0];
 
 for (int i = 1; i < row; i++) {
 dp[i][0] = dp[i - 1][0] + grid[i][0];
 }
 
 for (int i = 1; i < col; i++) {
 dp[0][i] = dp[0][i - 1] + grid[0][i];
 }
 
 for (int i = 1; i < row; i++) {
 for (int j = 1; j < col; j++) {
 dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
 }
 }
 return dp[row - 1][col - 1];
 }
 }
 
 | 
空间优化版DP
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 
 | class Solution {public int minPathSum(int[][] grid) {
 int row = grid.length;
 int col = grid[0].length;
 int[] dp = new int[col];
 dp[0] = grid[0][0];
 
 for (int i = 0; i < row; i++) {
 
 if (i != 0) {
 dp[0] = dp[0] + grid[i][0];
 }
 for (int j = 1; j < col; j++) {
 
 if (i == 0) {
 dp[j] = dp[j - 1] + grid[i][j];
 } else {
 dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
 }
 }
 }
 return dp[col - 1];
 }
 }
 
 | 
复杂度
- 时间复杂度:O(m×n) 
- 空间复杂度:标准版O(m×n),优化版O(n)