LeetCode-64 最小路径和
题目
结果
代码
主要思路是,每一个位置只能由上面或者左面的位置到达,从而有了dp的可能性。
标准版DP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| class Solution { public int minPathSum(int[][] grid) { int row = grid.length; int col = grid[0].length; int[][] dp = new int[row][col]; dp[0][0] = grid[0][0]; for (int i = 1; i < row; i++) { dp[i][0] = dp[i - 1][0] + grid[i][0]; } for (int i = 1; i < col; i++) { dp[0][i] = dp[0][i - 1] + grid[0][i]; } for (int i = 1; i < row; i++) { for (int j = 1; j < col; j++) { dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]; } } return dp[row - 1][col - 1]; } }
|
空间优化版DP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution { public int minPathSum(int[][] grid) { int row = grid.length; int col = grid[0].length; int[] dp = new int[col]; dp[0] = grid[0][0]; for (int i = 0; i < row; i++) { if (i != 0) { dp[0] = dp[0] + grid[i][0]; } for (int j = 1; j < col; j++) { if (i == 0) { dp[j] = dp[j - 1] + grid[i][j]; } else { dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j]; } } } return dp[col - 1]; } }
|
复杂度
时间复杂度:O(m×n)
空间复杂度:标准版O(m×n),优化版O(n)