0%

LeetCode-64

LeetCode-64 最小路径和

题目

结果

代码

主要思路是,每一个位置只能由上面或者左面的位置到达,从而有了dp的可能性。

标准版DP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public int minPathSum(int[][] grid) {
int row = grid.length;
int col = grid[0].length;
int[][] dp = new int[row][col];
dp[0][0] = grid[0][0];
// Fill in the first row
for (int i = 1; i < row; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// Fill in the first column
for (int i = 1; i < col; i++) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
// Fill in the dp by rows
for (int i = 1; i < row; i++) {
for (int j = 1; j < col; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[row - 1][col - 1];
}
}

空间优化版DP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public int minPathSum(int[][] grid) {
int row = grid.length;
int col = grid[0].length;
int[] dp = new int[col];
dp[0] = grid[0][0];

for (int i = 0; i < row; i++) {
// initial the dp[0]
if (i != 0) {
dp[0] = dp[0] + grid[i][0];
}
for (int j = 1; j < col; j++) {
// If this is 1st row
if (i == 0) {
dp[j] = dp[j - 1] + grid[i][j];
} else {
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
}
}
}
return dp[col - 1];
}
}

复杂度

  • 时间复杂度:O(m×n)

  • 空间复杂度:标准版O(m×n),优化版O(n)